1 Optimization

1. Suppose you are trying to make a rectangular fence for your yard. You only have 100 m of fence but luckily your house borders a straight river, so one side of your rectangular yard will be bordered by a river. What is the largest area yard you can enclose?

Solution: Let s be the side length of the yard that is perpendicular to the river. Then the side length of the yard that is parallel to the river is $(100-2 s)$ and the area of the yard is $A(s)=s(100-2 s)$. Taking the derivative gives $A^{\prime}(s)=100-4 s$. So $A^{\prime}=0$ when $s=25$ and note that $A^{\prime \prime}(s)=-4<0$ so this means that $A(25)$ is a local maximum. The largest area is $A(25)=25(50)=1250 \mathrm{~m}^{2}$.
2. You want to construct a cylindrical container that contains $100 \pi m^{3}$ of water. What should the dimensions of the container be if you want to minimize the total surface area?

Solution: The surface area is $S(r, h)=2\left(\pi r^{2}\right)+2 \pi r h$. The volume of the container is $V=100 \pi=\pi r^{2} h$. So $h=\frac{100}{r^{2}}$ and so $S(r)=2 \pi r^{2}+\frac{200 \pi}{r}$. Taking the derivative and setting it equal to 0 gives $4 \pi r-\frac{200 \pi}{r^{2}}=0$ so $r^{3}=50$ so $r=\sqrt[3]{50}$.
3. An airline is selling tickets for $\$ 200$ each and sells 50 per plane. For every $\$ 10$ they decrease the price, they sell 10 more tickets. The plane can hold a maximum of 100 passengers. At what price should they sell their tickets for maximum revenue?

Solution: Let x be the amount they decrease the price. Then at a price of $200-x$ each, they sell $50+x$ tickets. So the total revenue is $R(x)=(200-x)(50+x)$. Taking the derivative, we get $R^{\prime}(x)=150-2 x$. Setting the derivative to 0 , we get that $x=75$ so we should sell $50+75=125$ tickets. But since the plane has a maximum of 100 passengers and $R^{\prime}(x)$ for all $50+x<125$, this tells us that $x=50$ is the maximum on the domain of x which is $\{x: x \leq 50\}$. So they should set a price of $200-50=\$ 150$.
4. Find the rectangle of largest area whose diagonal is of length L.

Solution: Let one of the side lengths of the rectangle by s, then finding the largest area is the same as finding the largest area squared which is $s^{2}\left(L^{2}-s^{2}\right)$. Taking the derivative and setting it equal to 0 gives $2 L^{2} s-4 s^{3}=0$ so $s=0$ or $s=\frac{L}{\sqrt{2}}$. At $s=0$, the second derivative is positive and at $s=L / \sqrt{2}$, the second derivative is negative which tells us that $s=L / \sqrt{2}$ gives us the largest area. The other side length is $\sqrt{L^{2}-L^{2} / 2}=L / \sqrt{2}=s$ so the largest area is achieved with a square.
5. Find the area of the smallest triangle formed by the x axis, y axis, and a line that goes through the point $(4,2)$.

Solution: Suppose that the line goes through the point $\left(0, y_{0}\right)$. Then, the slope of the line is $\frac{2-y_{0}}{4}$ and is described by the line $y-y_{0}=\frac{2-y_{0}}{4} x$. The x intercept is when $y=0$ or when $x=\frac{4 y_{0}}{y_{0}-2}$. Thus, the area of the triangle is

$$
A\left(y_{0}\right)=\frac{1}{2} \cdot y_{0} \cdot \frac{4 y_{0}}{y_{0}-2}=\frac{2 y_{0}^{2}}{y_{0}-2} .
$$

Setting the derivative equal to zero gives $A^{\prime}(y)=\frac{2 y(y-4)}{(y-2)^{2}}$ so the two solutions are $y=0$ and $y=4$. The second derivative is $\frac{16}{(y-2)^{3}}$ and so $y_{0}=0$ is a local maximum and $y_{0}=4$ is a local maximum. So the area is $\frac{2 \cdot 4^{2}}{4-2}=16$.
6. Find the largest rectangle that can be inscribed into a semicircle of radius 1 so that one side of the rectangle is part of the diameter of the semicircle.

Solution: Let the height of the rectangle be h. Then the other side of the rectangle must be $2 \sqrt{1-h^{2}}$. So we want to maximize $2 h \sqrt{1-h^{2}}$, which is the same as maximizing its square $4 h^{2}\left(1-h^{2}\right)$. Setting the derivative equal to 0 gives $8 h-16 h^{3}=0$ so $h=1 / \sqrt{2}$. The area is $2 / \sqrt{2} \cdot 1 / \sqrt{2}=1$.
7. Suppose you only have 1 m of wire. You are to construct a circle and a square. What is the maximum and minimum total area of the circle and square?

Solution: Let s be the side length of the square and r be the radius of the circle. Then $4 s+2 \pi r=1$ so $r=\frac{1-4 s}{2 \pi}$. So the total area is

$$
A(s)=s^{2}+\frac{\pi(1-4 s)^{2}}{4 \pi^{2}}
$$

Setting the derivative equal to 0 gives $s=\frac{1}{\pi+4}$ and the second derivative is $2+\frac{8}{\pi}$ which is always positive. Thus, $s=\frac{1}{\pi+4}$ is a local minimum and $A=\frac{1}{16+4 \pi}$ is the minimum area. The domain of s is $[0,1 / 4]$ so the other critical points are the end point. We have that $A(0)=1 / 4 \pi$ and $A(1 / 4)=1 / 16$ so the maximum area is $1 / 4 \pi$ which occurs at $s=0$ so we only make a circle.

